傳統(tǒng)企業(yè)該如何在大數(shù)據(jù)時(shí)代找到自己的錨點(diǎn)?

2014/12/31 10:45     

傳統(tǒng)企業(yè)該如何在大數(shù)據(jù)時(shí)代找到自己的錨點(diǎn)?

在香港,有家日料店。這家店在很短時(shí)間內(nèi)風(fēng)靡全港,開了多個(gè)連鎖店。很多市民都知道這家日料店的海鮮非常新鮮實(shí)惠,價(jià)格只有別家的七折。 我也曾經(jīng)詢問過這位大廚朋友,是什么能做到這么好的生意?

大廚神秘兮兮地問我“你有沒有看到每個(gè)餐桌上的攝像頭?那就是我們的秘密武器。”

原來,這家海鮮店每天都會通過攝像頭,查看食客點(diǎn)餐、到餐的順序,以及剩菜的種類分量。通過這樣的盤點(diǎn),這家餐廳的老板可以準(zhǔn)確把握消費(fèi)者的喜好,從而對北海道的海鮮預(yù)購量也相對精準(zhǔn)。也正因?yàn)榇耍@家餐廳的貨源流轉(zhuǎn)迅速,成本也隨之降低。

這是個(gè)有趣的案例。一家沒有ERP系統(tǒng)的傳統(tǒng)餐廳,通過攝像頭實(shí)現(xiàn)了對采購的信息化管理:收集用戶信息,分析進(jìn)而用于第二天的采購決策,循環(huán)反復(fù),以此降低生意成本。

對很多人而言,大數(shù)據(jù)只是一個(gè)流行詞。在覺得數(shù)據(jù)距離自己業(yè)務(wù)很遠(yuǎn)的同時(shí),傳統(tǒng)企業(yè)又心生恐懼不知未來會怎樣:哪種生意可以用上數(shù)據(jù)?數(shù)據(jù)可以解決哪些具體業(yè)務(wù)問題?

誰需要大數(shù)據(jù)?

美國一家有著百年歷史的傳統(tǒng)零售店,這家百貨店六年前就開始大量收集競爭對手的價(jià)格數(shù)據(jù)。最近,他們除了做好了動態(tài)的定價(jià)引擎,還著手研究產(chǎn)品與人群匹配的自動化系統(tǒng)。在電商領(lǐng)域,我們可以將用戶的認(rèn)知分為三種:瀏覽者,購買者和消費(fèi)者。傳統(tǒng)百貨店既不知道走進(jìn)商店的人們都逛了哪些店(瀏覽數(shù)據(jù)),也不知道消費(fèi)者在每個(gè)品牌店都買了什么商品(購買數(shù)據(jù)),用了什么銀行卡買單,更不要說消費(fèi)者購物完成后,他們的使用體驗(yàn)數(shù)據(jù)。

生產(chǎn)企業(yè)最痛的點(diǎn),是我知道誰幫我賣,但不知道誰在買。對零售業(yè)這個(gè)問題變?yōu)椋何抑勒l在買,但不知道客人如何做決定的,更不知道他們用得如何,出了什么問題也不知道。這是因?yàn)榕f有的模式,數(shù)據(jù)無法跟蹤到門店之外,造成了生產(chǎn)和使用是脫節(jié)的。

但在大數(shù)據(jù)時(shí)代,生產(chǎn)企業(yè)可以利用社會化數(shù)據(jù)甚至傳感器跟蹤到用戶的使用方式。產(chǎn)品出了什么問題,生產(chǎn)企業(yè)甚至能在用戶感知之前,就了解到問題所在,并提供解決方案。

如果傳統(tǒng)百貨公司可以擁有這些數(shù)據(jù)呢?他們可以知道自己會員喜歡什么品牌,偏好什么樣的付費(fèi)方式,也可以向生產(chǎn)廠商下單,預(yù)購符合會員興趣的商品。

數(shù)據(jù)可以幫助零售業(yè)對人群的需求與商品的供應(yīng)快速有效率匹配起來,最大的價(jià)值就在這里。

當(dāng)獲取數(shù)據(jù)變得越來越容易的時(shí)候,企業(yè)就會發(fā)現(xiàn),不用數(shù)據(jù)做決策就會失去很多機(jī)會。未來的每個(gè)企業(yè)都會成為數(shù)據(jù)企業(yè),每個(gè)產(chǎn)品都會成為數(shù)據(jù)產(chǎn)品。因?yàn)槔锩娴膬?yōu)化點(diǎn)都依賴于數(shù)據(jù)創(chuàng)新,數(shù)據(jù)會成為企業(yè)發(fā)展的驅(qū)動力。

資源有限怎么做大數(shù)據(jù)?

中小企業(yè)在數(shù)據(jù)化中最大的問題是資源有限,沒有太多的資源可供試錯(cuò),試錯(cuò)空間也很小。因此,中小企業(yè)應(yīng)該收集關(guān)鍵信息,而不是收集所有數(shù)據(jù)。

你可以選擇比較小的場景進(jìn)行數(shù)據(jù)收集、分析。這個(gè)場景要滿足以下條件:

1) 有沒有所需數(shù)據(jù)?

2) 數(shù)據(jù)準(zhǔn)不準(zhǔn)確?

3) 數(shù)據(jù)的實(shí)時(shí)性如何?

4) 數(shù)據(jù)與算法的匹配

5) 如何從錯(cuò)誤中學(xué)習(xí), 數(shù)據(jù)回流能否起持續(xù)優(yōu)化作用

最后的一個(gè),是這些回流的數(shù)據(jù)能夠改善我們之前的認(rèn)知。就之前日本料理餐館的案例而言,消費(fèi)者的選擇就是他們最關(guān)鍵的決策依據(jù),所以可以優(yōu)先收集這類數(shù)據(jù)。

而大數(shù)據(jù),則是基于企業(yè)數(shù)據(jù)化基礎(chǔ)之上的數(shù)據(jù)整合、算法創(chuàng)新和產(chǎn)品化。比如,谷歌地圖之所以能告訴你前面的路堵車,其實(shí)是有賴于每個(gè)使用谷歌地圖的位置分享的實(shí)時(shí)整合。所以我認(rèn)為政府的推動,可以讓小企業(yè)減少得到數(shù)據(jù)的門檻、增加業(yè)界的數(shù)據(jù)功用,這樣就更有利于讓小企業(yè)也享受到大數(shù)據(jù)的科技。從產(chǎn)業(yè)鏈來看,小公司聯(lián)盟,把數(shù)據(jù)統(tǒng)一,用數(shù)據(jù)來解決一些業(yè)內(nèi)彼此都不能解決的問題。

中小企業(yè)不容易像大公司一樣有龐大的數(shù)據(jù)團(tuán)隊(duì)。因此,中小企業(yè)在運(yùn)用數(shù)據(jù)的時(shí)候,一定要有更穩(wěn)妥的辦法,注重使用數(shù)據(jù)效益,可以嘗試從小專案著手,再逐步拓展。

另一個(gè)值得注意的是,經(jīng)營的本質(zhì)還是取決于創(chuàng)始人的方向與管理,大家不能本末倒置,一味期待透過數(shù)據(jù)就能解決企業(yè)所有的挑戰(zhàn)。

數(shù)據(jù)為什么是割裂的?

最近我遇到一位制造電腦硬件的廠商。他說,內(nèi)部生產(chǎn)都可以數(shù)據(jù)化,但發(fā)現(xiàn)與銷售需求嚴(yán)重割裂,“這些數(shù)據(jù)似乎內(nèi)外接不上。”

為什么會出現(xiàn)這樣的狀況?

我常用的一個(gè)比喻是,開餐館定菜單的往往是餐廳老板,但是每天買菜的是最底層的采購員。所以很少有餐廳能常出名菜,因?yàn)閺N師沒法定菜單,也不能用到適合的好原料。

數(shù)據(jù)的創(chuàng)新是無時(shí)無刻的,算法的創(chuàng)新周期稍長,而產(chǎn)品的創(chuàng)新往往是“十年磨一劍”。也因此,在企業(yè)擁有決定權(quán)的人,往往是擁有產(chǎn)品決策權(quán)的人。如果僅僅站在單一角度去看,很難找到數(shù)據(jù)和業(yè)務(wù)的結(jié)合點(diǎn)。

根據(jù)我的觀察,目前非常缺乏一種數(shù)據(jù)管理人才:他要對業(yè)務(wù)要有足夠的理解,明白數(shù)據(jù)能為業(yè)務(wù)起什么作用,了解技術(shù)更新與價(jià)值產(chǎn)生的關(guān)系,懂得從數(shù)據(jù)收集到加工,到新數(shù)據(jù)與歷史的整合,再到使用數(shù)據(jù)的便利性等等。其中,對業(yè)務(wù)和商業(yè)的理解,絕對是成為數(shù)據(jù)主管所需要的基本條件,但若是想達(dá)到杰出的程度,肯定要懂得如何在人材匱乏的大數(shù)據(jù)行業(yè)中,吸引和保留住人才的眼光和能力了。

對于業(yè)務(wù)人員,也可以問問自己:現(xiàn)在擁有的數(shù)據(jù)能幫我解決問題嗎?假定所有數(shù)據(jù)可以獲取,我需要什么數(shù)據(jù)來解決問題?要怎么做才能更更容易獲取需要的數(shù)據(jù)呢?

舉例來說,我過去看到路上的交通狀況時(shí)曾經(jīng)想過,大城市里的計(jì)程車服務(wù)會不會有可能改善?我那時(shí)想著,如果計(jì)程車上有個(gè)燈能顯示過去客戶對他的評價(jià),那么司機(jī)為了保持住好評價(jià),應(yīng)該會提供更好的服務(wù)水準(zhǔn)。這就是數(shù)據(jù)可能解決的一個(gè)簡單例子。下一步才是如何設(shè)計(jì)一個(gè)容易的方法,讓顧客去評價(jià)。而現(xiàn)在的叫車軟件就是一個(gè)很好的實(shí)現(xiàn)案例。這是訓(xùn)練數(shù)據(jù)敏感度的好方法,也是過去十年我個(gè)人一直在用的方法——透過周遭事物訓(xùn)練數(shù)據(jù)敏感度,讓數(shù)字“說話”。

最難點(diǎn):在于你對自身的理解

大數(shù)據(jù)應(yīng)用講求跨界和創(chuàng)新,更準(zhǔn)確地說,大數(shù)據(jù)的價(jià)值來自可以從多角度來看同一件事,全景觀察可以減少誤差及創(chuàng)造新的機(jī)會。但并不是要求大家能夠認(rèn)知到全部外面的世界,而是能讓其他人的數(shù)據(jù)為你所用。

大數(shù)據(jù)實(shí)踐中最困難的地方在于你對自身的理解,再加上,隔行如隔山,外部整合回來的數(shù)據(jù)可能很有價(jià)值但同時(shí)也有很多噪音,大家并不完全清楚數(shù)據(jù)的來源和定義。

如何去看清楚自己呢?根據(jù)過去的經(jīng)驗(yàn),我認(rèn)為首先是從小處著手。

傳統(tǒng)企業(yè)在初期不要貿(mào)然就開始一個(gè)非常大的大數(shù)據(jù)項(xiàng)目。數(shù)據(jù)化比較適合從小而具體,容易評估效果作為起點(diǎn)的專案開始,以此鍛煉自己收集、加工、使用數(shù)據(jù)來做決策,以及衡量這個(gè)數(shù)據(jù)價(jià)值的能力,即以小知大。從小的場景開始,用數(shù)據(jù)在商業(yè)場景中不斷優(yōu)化。

Axciom公司的首席數(shù)據(jù)官程杰曾經(jīng)提出過“數(shù)據(jù)的三層境界”:

數(shù)據(jù)1.0  自身業(yè)務(wù)產(chǎn)生什么數(shù)據(jù),我們用什么數(shù)據(jù)做分析優(yōu)化;

數(shù)據(jù)2.0  將現(xiàn)有數(shù)據(jù)與自己的歷史或上下游數(shù)據(jù)交叉,由此優(yōu)化數(shù)據(jù);

數(shù)據(jù)3.0  就是購買外部數(shù)據(jù)或者將自己的數(shù)據(jù)分享出去,數(shù)據(jù)是互溶共通的,在交融中,產(chǎn)生新的產(chǎn)品體驗(yàn)。

這三層境界,都需要企業(yè)有不同的技術(shù)和架構(gòu)去實(shí)現(xiàn)數(shù)據(jù)的提煉、加工和產(chǎn)品化、整合。這其實(shí)是一個(gè)不斷用數(shù)據(jù)來描述和還原企業(yè)業(yè)務(wù)的過程。

最近,阿里數(shù)據(jù)團(tuán)隊(duì)成功地提升了快的打車的打車成功率。我們就疊加了數(shù)據(jù)的一次使用和二次使用。

我們將實(shí)時(shí)數(shù)據(jù)與歷史數(shù)據(jù)整合。原來APP在發(fā)送打車需求的時(shí)候,是以打車人的地理位置為原點(diǎn),每過幾分鐘擴(kuò)散到附近300米,600米的出租車。這個(gè)消息的推送是以地理位置為推送邏輯的。但是假如附近的司機(jī)其實(shí)并不想去目的地,接單的成功率就會降低。因此,我們把司機(jī)“優(yōu)先目的地”這個(gè)數(shù)據(jù)加入推送系統(tǒng)中,就重新優(yōu)化了數(shù)據(jù),讓更愿意接單的司機(jī)“可視度”更高了。也因此提高了整體的接單成功率。當(dāng)然前面所說只是優(yōu)化的其中一個(gè)點(diǎn)子。

在我看來,所有的數(shù)據(jù)產(chǎn)品都是與決策相關(guān)的。也因此,數(shù)據(jù)優(yōu)化的應(yīng)該溯源于人或者機(jī)器中分析決策的每個(gè)環(huán)節(jié),不斷更新你的錨點(diǎn)。

打破一個(gè)決策,首先要知道人們?nèi)绾螞Q策,以及有了新數(shù)據(jù)又如何改變決策。這兩者間的區(qū)別是什么?會帶來什么價(jià)值?大決策往往是由一連串的小決策組成的。比如快的打車APP提高效率的關(guān)鍵點(diǎn),在于如何讓司機(jī)的數(shù)據(jù)與用戶的數(shù)據(jù)關(guān)聯(lián),同時(shí)如何不斷交叉比對歷史數(shù)據(jù),找到最高效的匹配。這其中最關(guān)鍵的是如何衡量數(shù)據(jù)回流的效用,在動態(tài)中,找到新的錨點(diǎn)。

如今傳統(tǒng)企業(yè)已經(jīng)到了必將需要融入互聯(lián)網(wǎng)之中的時(shí)刻,這個(gè)時(shí)候?qū)崟r(shí)數(shù)據(jù)就是你的新數(shù)據(jù)資料。當(dāng)中的能力最為關(guān)鍵的是對實(shí)時(shí)數(shù)據(jù)的還原、提煉,并為企業(yè)所用。這就是一個(gè)“數(shù)據(jù)”持續(xù)優(yōu)化決策的過程——看清楚“你自己”的動態(tài)過程。

通用電氣CEO杰夫•伊梅爾特曾說:如果昨晚你睡覺時(shí),GE還是一家工業(yè)公司,那么今天醒來就會變成一家軟件和數(shù)據(jù)分析公司。

作為傳統(tǒng)工業(yè)的代表,通用電氣都想通了,和人家說,我已經(jīng)擁有千萬級的數(shù)據(jù)點(diǎn),傳統(tǒng)企業(yè)還有什么可猶豫的?

你還可以閱讀以下相關(guān)文章

家裝電商BuildDirect的大數(shù)據(jù)玩法; 

衛(wèi)星大數(shù)據(jù)照耀農(nóng)業(yè);

工業(yè)大數(shù)據(jù)是中國贏得新制造革命的核心競爭力;

為何九成高管不看數(shù)據(jù),僅憑直覺?

相關(guān)閱讀